ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

Scientific Visualization, 2023, volume 15, number 3, pages 92 - 100, DOI: 10.26583/sv.15.3.10

Heat Fluxes Visualization in High Speed Flow behind the Shock Wave

Authors: I.A. Znamenskaya1,A, M.I. Muratov2,A, E.A. Karnozova3,A, A.E.  Lutsky4,B

A Moscow State University, Faculty of Physics, Russia, Moscow,

B Keldysh Institute of Applied Mathematics RAS

1 ORCID: 0000-0001-6362-9496, znamen@phys.msu.ru

2 ORCID: 0000-0002-6545-5829, muratov583@gmail.com

3 ORCID: 0000-0001-9611-443X, Liza.Karnozova@yandex.ru

4 ORCID: 0000-0002-4442-0571, allutsky@yandex.ru

 

Abstract

The paper presents the thermographic studies of unsteady heat fluxes behind a plane shock wave in the rectangular 24x48 mm shock tube test section. Consecutive panoramic visualization of the heat fluxes plots on streamlined walls after the plane shock wave interaction with a rectangular obstacle fixed on the channel wall are obtained. The duration of the recorded thermal processes is up to 40 milliseconds after the shock wave passage. The heating and cooling of the test chamber walls streamlined by supersonic flow are visualized using the Telops FAST M200 high-speed infrared camera (operating range 1.5 – 5.1 microns) through the quartz windows transparent to infrared radiation. Visualization of the thermal fields were compared with the shadow images and results of 2D numerical simulation of a nonstationary gas dynamic process after the diffraction of a shock wave with Mach numbers M=2.0-4.5.

 

Keywords: flow visualization, infrared thermography, shock wave diffraction, unsteady heat fluxes, high-speed shadow shooting, numerical simulation.