ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             





Scientific Visualization, 2021, volume 13, number 5, pages 65 - 77, DOI: 10.26583/sv.13.5.06

Synthesis and Visualization of Image Datasets of Parametric 3D Model for Neural Network Training and Testing in Data-Poor Conditions

Authors: O.V.  Kretinin1,A, E.V.  Popov2,B, A.P.  Tsapaev3,A, L.O.  Fedosova4,A, M.I.  Tyurikov5,A

A Nizhniy Novgorod State Technical University n.a. R. E. Alekseev

B Nizhny Novgorod State University of Architecture and Civil Engineering

1 ORCID: 0000-0002-5672-9170, kretinin@list.ru

2 ORCID: 0000-0002-3058-2369, popov_eugene@list.ru

3 ORCID: 0000-0001-7336-4815, alexgrusp@mail.ru

4 ORCID: 0000-0002-0635-3160, fedosovaludmila@list.ru

5 ORCID: 0000-0003-1839-4506, sys32b@gmail.com

 

Abstract

Flaw detection of the inner surfaces of especially critical pipes is based on visualization, which requires complex optical systems equipped with artificial intelligence functions. Training of such systems is very complicated due to the limited volume of defective products. The paper describes training and testing of machine learning algorithms in poor data by the example of detecting a defect at the inner surface of a pipe. The authors propose a method for developing a set of synthetic training images obtained using 3D models of technical objects with parameterized defects applied to them. Images can be generated by parametric description of the artificially defected inner surface of a pipe 3D model in Autodesk Inventor environment. Windows AutoIt OS automation environment is applicable to generate synthetic images and masks. The method allows obtaining a set of synthetic pipe images for training neural networks with U-Net and LinkNet architectures. The trained neural networks testing has shown the defect recognition at a high level both on a synthetic sample of images and on real images of inner surface of rejected pipes.

 

Keywords: visualization, 3D modeling, machine learning, image processing, visual control, neural networks, data mining, U-Net, LinkNet.