ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
Scientific Visualization
Issue Year: 2016
Quarter: 4
Volume: 8
Number: 5
Pages: 103 - 112
Article Name: FACE RECOGNITION ALGORITHM BASED ON PCA USING HAAR AND DAUBECHIES WAVELET TRANSFORM
Authors: V.G. Spitsyn (Russian Federation), Yu.A. Bolotova (Russian Federation), N.V. Shabaldina (Russian Federation), Bui Thi Thu Trang (Vietnam), Phan Ngoc Hoang (Vietnam)
Address: V.G. Spitsyn
vl.gr.sp@gmail.com
Tomsk Polytechnic University, Russian Federation

Yu.A. Bolotova
julya21@hotbox.ru
Tomsk Polytechnic University, Russian Federation

N.V. Shabaldina
nataliamailbox@mail.ru
Tomsk State University, Russian Federation

Bui Thi Thu Trang
trangbt.084@gmail.com
Ba Ria – Vung Tau University, Ba Ria – Vung Tau, Vietnam

Phan Ngoc Hoang
hoangpn285@gmail.com
Ba Ria – Vung Tau University, Ba Ria – Vung Tau, Vietnam
Abstract: In this paper we present a novel algorithm for face recognition using combination of wavelet transforms and principal component analysis (PCA). Face features are extracted using combination of Haar and Daubechies wavelet transform. Then obtained features are used for face recognition via PCA (eigenfaces). The experimental results show that the highest face recognition accuracy rate is obtained using the combination of Haar and Daubechies wavelet transforms for face features extraction. The proposed algorithm gives an effective performance of face recognition on noisy images and competes on the accuracy recognition with state-of-the-art algorithms. Some experiments were conducted on videos. The Viola-Jones method was used for face detection. The results were compared with «Associative neural networks» (ANN).
Language: Russian


Open Article   Download ZIP archive